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ABSTRACT

Bioenergy is reemerging as an important topic in energy-related research. The rapid
increase in costs of petroleum products has led to a renewed interest in alternative sources of
energy such as biofuels. World-wide energy consumption has increased 17 times in the last
century and the demand for energy in emerging markets such as China and India is projected to
increase in the future at unprecedented rates. A review of the current bioenergy literature is
presented in this thesis. Also, comments on the economics of bioethanol are discussed.

The primary part of the thesis focuses on statistical classification methods related to
factors that influence landowner attitudes towards harvesting timber. A comparison of linear
discriminant analysis (LDA) and classification tree (CT) methods is presented using the results of
a forest landowner survey as a case study. Several CT techniques are discussed with an
emphasis on the CRUISE classification tree program. The LDA procedure in SPSS is used to
construct linear discriminant functions of the survey results. CRUISE is also used to construct
classification trees of the survey results. Survey results showed that 73.3 percent of farmer
forest landowners harvested timber, and 69.6 percent of non-farmers who had a length of
residency beyond 36.5 years harvested timber. For landowners who conducted commercial
timber harvests, the importance level of income from the harvest was the overriding factor
relative to all other factors. Discriminant analysis results supported the results of CTs. However,
the linear discrimination functions and corresponding coefficients did not provide the level of

two-dimensional detail of CTs, which also detected hidden interactions.
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The other component of the thesis assesses optimal cellulosic biorefinery sites that use
mill residues in Texas and Louisiana based on the cost of trucking transportation costs. A
transportation model for trucking costs is developed and is used to estimate supply curves or
marginal cost curves for mill residues. Mill residue data are provided by the U.S. Forest Service.

The resolution of the data is by zip code. The top five sites in Texas and Louisiana are presented.

vi
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Chapter 1

1. Introduction

The twentieth century was marked by rapid growth and increased prosperity in the
world. The rapid increase in costs of fossil fuels has led to a renewed interest in new sources of
energy (Goldemberg 2000). Also, the increasingly serious problem of greenhouse gases in
atmosphere from the combustion of fossil fuels has accelerated the emergence toward the
development of alternative energy sources such as bioenergy and biofuels (Ture et al. 1997).
Liquid fuels and value-added chemicals from biomass will be required to meet the greater
energy demand and represent low-risk solutions to providing a renewable, sustainable and
secure domestic energy supply (Demirbas 2000, Balat 2005). In this thesis, economic and
environmental issues related to biofuels are presented. The key topic of finding optimal biofuel
plant locations in Texas and Louisiana are also discussed. Statistical classification methods are
used to study the factors that influence landowner attitudes towards harvesting timber, a key
consideration for bioenergy plants interested in procuring cellulosic fiber from standing trees
for conversion to biofuels or biochemicals. A comparison of linear discriminant analysis (LDA)
(Balakrishnama and Ganapathiraju 1998) and classification tree (CT) methods (Brieman et al.
1984) is presented using the results of a landowner survey as a case study (Longmire et al.
2007). These methods provide procurement foresters and land managers with objective and
scientific-based tools to assess characteristics of forest landowners likely to harvest timber

commercially and also characteristics of forest landowners that are not likely to harvest timber.
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Chapter 2 provides a brief introduction of the main concepts and issues related to
biomass and biofuels. The literature review begins with a brief history and status quo of global
energy supply and consumptions, and the importance and urgency of developing renewable
energy sources. Next, the biomass and biofuels are defined; and the economic and
environmental issues of using bioenergy and biofuels are discussed. Transportation costs
associated with supplying mill residues to biorefineries are estimated. Cellulosic ethanol, a
biofuel produced from the woody parts of trees/plants, perennial grasses, or their residues, is
contrasted with grain-based ethanol produced mainly from corn. The chapter concludes with a

discussion of long-term potential of biofuels.

In Chapter 3 statistical classification methods are presented with an emphasis on linear
discriminant analysis (LDA) and classification trees (CT). The history, theory, limitations,
validation, and applications of these two methods are compared. Several CT techniques are
studied and compared. CRUISE, which is an unbiased classification tree program, is specially
examined. CRUISE has three split methods, three variable selection methods, and three
pruning methods; it is unique among classification tree algorithms with high prediction
accuracy and fast computation speed. CRUISE is free of selection bias, sensitive to local
interaction between variables, and robust to missing values in the learning sample (Kim and Loh

2001, Kim and Loh 2003).

Chapter 4 presents a case study of using LDA and CT methods for the results of a forest
landowner survey. The private woodland owner survey was conducted in Tennessee in seven

counties located in the region known as the Northern Cumberland Plateau in 2005 (Longmire et
2
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al. 2007). One objective of the survey was to characterize differences between forest
landowners that harvest trees with forest landowners that do not harvest trees. The LDA
procedure in SPSS is used to construct linear discriminant functions. CRUISE is used to
construct classification trees: 13 combinations of variable selection methods and split-point

selection methods are examined, and optimal classification trees are presented.

Chapter 5 discusses preliminary research work supporting a larger research study on
developing a real-time, web-based optimal siting system for biomass energy producing facilities
for the 33 Eastern United States. Methods are presented in this chapter that can be used to
select optimal biorefinery locations based on mill residue quantities and trucking transportation
costs. The smallest geographic resolution of the data for selecting a biorefinery location is a zip
code. Mill residues from primary wood manufactures are considered the cellulosic feedstocks,
and supply curves for transportation costs by truck are constructed (Hodges et al. 2007). As a

case study, the five lowest cost zip codes are selected in Texas and Louisiana (Liu et al. 2008).

Finally, chapter 6 summarizes the overall intent in this thesis. Possibilities for future

research are also discussed.
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Chapter 2

2. Literature Review of Biomass and Biofuels

2.1. Introduction

A plethora of literature are available in the field of biomass and biofuels. Six hundred
references that focus on the economics and availability of biomass and biofuels, and the
process of siting for a biofuel refinery are reviewed in this chapter. Many citations are from the
“Journal  of Biomass & Bioenergy”,  which  was  established in 1991

(http://www.elsevier.com/wps/find/journaldescription.cws home/986/description#description,

referenced 5/08/2008).

The 20" century has been marked by rapid industrial growth and increased prosperity in
the world. Energy consumption world-wide has increased 17-fold in the last century
(Goldemberg 2000). A frequently documented problem related to this issue is the increasing
emission into the atmosphere of greenhouse gases resulting from the combustion of fossil fuels
(Ture et al. 1997). The rapid increase in real prices of fossil fuels in the world market during the
last decade has accelerated the interest of both scientists and politicians toward the
development of new and alternative sources of energy. The oil reserves of the world are
estimated to be depleted in less than 50 years at the present rate of consumption (Gommers et
al. 2000, Sheehan et al. 2000). As exploration for new petroleum resources becomes
increasingly expensive, there will be more economic advantages in substituting conventional

petroleum-based fuels and products with alternative renewable sources of energy, such as
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cellulosic-based fuels that use agricultural feedstock and woody residues (Ozcimen and
Karaosmanoglu 2004, Jefferson 2006).

There are many factors, such as sustainability, energy security, economic stability, and
environmental and other socioeconomic issues that must be considered for bioenergy and
biofuels. Modern innovations and technology have made some biofuels cost-competitive with
respect to fossil fuels (Demirbas 2000). This cost-competitiveness may develop into a cost
advantage if the prices of fossil fuels continue to increase at the same rate (Cadenas and
Cabezudo 1998).

The transition to a renewable energy-supply source, which has lower levels of pollutants,
may prove to be more vital, given the potential threat of global climatic change, primarily
caused by the combustion of fossil fuels. The agreement at Kyoto in December 1997

(http://en.wikipedia.org/wiki/Kyoto Protocol, referenced 5/08/2008) signaled the political

acceptance of threats of global pollution and need for an alternative-fuel strategy among the
industrialized countries around the globe. As of November 2007, 175 countries, with the
exception of the United States, have ratified the protocol, which insists that emission of carbon
dioxide and other greenhouse gases must be reduced. Therefore, energy from biomass is

thought to be an environmentally friendly alternative.

In the following parts of this chapter, certain important issues related to biofuels are
discussed. The second part introduces the concept of biomass and biofuels and discusses the
relative economic and environmental issues. The third section discusses the transportation

costs of biofuels, which is a critical issue for determining the sites to locate biofuel facilities. The

5
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fourth section contains discussions regarding cellulosic ethanol, which is a biofuel produced
from the woody parts of trees/plants, perennial grasses, or their residues. This technology has
been commercialized and has great long-term potential. The fifth section comments on a
sensitive topic: grain-based ethanol, which is mainly produced from corn. Grain-based ethanol
has a long history and its technology and application are quite established. However, it has
been increasingly criticized as economically inefficient and of questionable social benefit; the
pros and cons of this issue are objectively discussed in this section. Some novel research studies
are also listed herein, e.g., biofuels based on life residues or animal fat. Summarizing remarks

are provided in the last section.

2.2. Biomass and Biofuels

2.2.1. Concept of Biomass and Biofuels

Biomass is a generic term and it refers to living and recently dead biological material
that can be used as fuel or for industrial production of other byproducts. Most commonly,
biomass refers to plant material grown for use as biofuel, but it also includes plants or animals
used for production of fibers, chemicals, or heat. Biomass may also include biodegradable

wastes that can be burnt as fuel (http://en.wikipedia.org/wiki/Biomass, referenced 5/08/2008).

Biomass has been used for energy purposes for a long time. The most common and
traditional use of biomass is as firewood for cooking and heating, which is not sustainable
because it may contribute to land degradation, sometimes leading to desertification. The

modern use of biomass is different from the traditional use. It focuses on the conversion of
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feedstock into high-quality energy carriers, for example, electricity and liquid biomass fuels
used for transportation (Wyman 1996). Milbrandt (2005) has commented that compared with
other renewable resources, biomass is very flexible: it can be used as fuel for direct combustion,
gasified, and used in combined heat and power technologies or biochemical conversions.
Biomass is receiving increasing attention as scientists, policy makers, and biomass growers
search for clean, renewable energy alternatives. Main biomass conversion process is illustrated

in Figure 2.1.

Biofuels are biomass-based transportation fuels. Broadly, biofuels are defined as solid,
liquid, or gas fuels, consisting of or derived from biomass. However, biofuels are strictly
defined as liquid or gas fuels used for transportation that are derived from biomass

(http://en.wikipedia.org/wiki/Biofuels, referenced 5/08/2008). Biofuel is an alternative to fossil

fuel that reduces greenhouse-gas emission and increases long-term energy security.

Biofuels are useful globally and biofuel industries are expanding rapidly in Europe, Asia,
and the Americas (Byrne et al. 1996, Puhan et al. 2005, Soccol et al. 2005). The most common
use for biofuels is in automotive transport (Fulton et al. 2004). Biofuels can be produced from
any carbon source that can be replenished rapidly. Biofuels have many advantages, including
sustainability, reduction of greenhouse-gas emission, and guaranteed supply of raw material

(Reijnders 2006). Sources of the main liquid biofuels are illustrated in Figure 2.2.
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Biomass

Feedstock Processing

Thermochemical Conversion Biochemical Conversion
I
Pyrolysis Gasification Liquefaction Bioethanol Biodiesel
Syn-oil Syn-gas Bio-chemicals

Figure 2.1 Main biomass conversion process. Source: (Demirbas 2007)

BIOFUELS
BIOETHANOL
BIODIESEL Wheat Maize Sugar beet Potatoes

Rapeseed | | Soybean Palm Sunflower

Figure 2.2 Sources of the main liquid biofuels. Source: (Demirbas, 2007)
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2.2.2. Overview of the Production and Consumption of Biofuels

Bioethanol and biodiesel are the two most modern biofuels (Demirbas 2002).
Bioethanol is a fuel derived from renewable sources of feedstock such as corn, wheat, sugar
beet, straw, and wood. It is an additive to or substitute for gasoline. Wood, straw, and
household wastes can be converted to bioethanol. Bioethanol is derived from the alcoholic
fermentation of sucrose or simple sugars, which are produced from biomass by hydrolysis
(Demirbas 2007). Biodiesel, which is derived from vegetable oil, is an alternative to diesel fuel.
Producing biodiesel from vegetable oil yields less pollution than petroleum-diesel fuel, but its
price is more than double the cost of diesel because of the substantial increase in the price of
feedstock (Ma and Hanna 1999). Although biodiesel fuels are currently mainly prepared from
soybean oil, there are large amounts of low-cost oils and fats that can be converted into
biodiesel, such as restaurant wastes and animal fats including beef tallow and pork lard

(Canakci and Van Gerpen 2001, Zhang et al. 2003).

Recent advances related to the production of biofuels are based on the development of
new technologies in the fields of chemistry and engineering. Ptasinski et al. (2007) have
compared different types of biofuels with reference to their gasification efficiency and have
used this as a benchmark against the gasification efficiency of coal. Poole et al. (2007) have
analyzed the emission of various elements from a biofuel gasifier. Some insightful reports are
listed herein, which deal with the latest technologies in biofuel production: Demirbas (2003),

Bothast (2005), Demirbas (2006), Chen and Dixon (2007), and Brothier et al. (2007).
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2.2.3. Economic and Environmental Advantages of Biofuels

Economic and environmental advantages promote the use of biofuels as an attractive
alternative to use of fossil fuels. Two important aspects lead to biofuels being considered
competitive in price: innovative technology substantially decreases the cost of producing
biofuels; the dramatically increasing price of oil facilitates the use of biofuels for economic
advantages. More important, the use of biofuels is considered to be environmentally friendly.
Biofuel is a potential substitute for conventional fuels that reduces pollution and supports

sustainable agriculture.

Matthews (2001) has described the development and application of a standard
methodology for evaluating the energy and carbon budgets of a biofuel production system.
Puppan (2002) discusses life-cycle assessment, which is a scientific evaluation method to
investigate the net environmental impacts of biofuels. He positively concludes that the impacts
of biodiesel and bioethanol on the environment are more favorable than those brought about
by conventional fuels. Gan and Smith (2006) have investigated the cost-competitiveness of
woody biomass for electricity production, by considering the reduction in greenhouse-gas
emission and taxes payable, which might enhance the economic potential of production and

use of bioenergy.

Further details about the economic efficiency of biofuels are available in studies by
Weber (1993), Bender (1999), Taleghani and Kia (2005), and Hill et al. (2006). More articles
about the evaluation of the environmental impact of biofuel production are available in

Demirbas (2004), Balat (2005), Demirbas and Balat (2005), Wierzbicka et al. (2005), Bies (2006),
10
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Gorski (2006), Lal (2006), Eriksson and Johansson (2006), Arellano et al. (2006), Jain et al. (2006),

Wou et al. (2006), and Adler et al. (2007).

2.2.4. Prospective Vision of Biofuels

The International Energy Agency has published a report “Biofuels for Transport: An

International Perspective” in 2004. This report contains a global perspective and assesses the
strides made and developments achieved in the field of bioenergy and the direction toward
which the bioenergy field appears to be heading. It reviews recent research efforts and
experiments in various aspects of bioenergy: process technology, impacts of reduction in
greenhouse-gas emission, biofuel costs, market impacts, feedstock availability, and policy

incentives (Fulton et al. 2004).

Biofuel production throughout the world has increased very rapidly, from 28 to 44
billion liters in 2006: production of bioethanol and biodiesel increased by 22 percent and 80
percent, respectively. Although biofuels comprise less than one percent of the global liquid fuel
supply, the increase in the production of biofuels in 2006 led to a 17 percent increase in
worldwide liquid fuel supply (Hunt 2006). Modern biomass energy is expected to make up a
significant share of the future energy market. Adoption of bioenergy is expected to be the
result of: 1) decreasing costs related to the production and conversion of biomass energy, 2)

abundant feedstock resources, and 3) environmentally-friendly characteristics of biomass.

Biofuel is considered to be a strategic resource for energy supply in the future, i.e.,

which will fulfill the Kyoto agreement to replace fossil fuels and to mitigate greenhouse-gas
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emissions. Many industrialized countries already use a significant quantity of biofuels for their
energy supply (Hillring 2006). Many influential organizations anticipate biomass to play a major
role in the future, because it is a more sustainable, renewable and globally applicable energy
supply. Meanwhile, the environmental and social pros and cons of biomass must be considered
based on its life-cycle analysis and evaluation of the external ramifications. Further discussions
about the future of biofuels are available in publications by Hall and Scrase (1998), Parikka

(2004), Hoogwijk et al. (2005), and Kaltschmitt and Weber (2006).

2.3. Transportation Costs and Biofuel Refinery Siting Models

2.3.1. Transportation Costs

Transportation cost, the cost of moving feedstock or products, is an important
component of the overall costs for recovering energy from biomass. Transportation cost
typically represents a substantial portion of the total costs of woody biomass, due to the low
value of the wood, long distance traveled for delivery, and increasing costs of diesel fuel.
Evaluating the economic feasibility of biomass resources as sources of energy therefore
requires a comprehensive study of transportation costs.

Transportation cost is determined significantly by the geographical location of forests
and energy plants. Searcy et al. (2007) have analyzed the transportation cost for projects of
small and large sizes. They have calculated the relative costs of transportation by truck, rail,
ship, and pipeline for three biomass feedstocks, which were straw, corn stover, and woodchips.

They suggest that the transportation costs should be differentiated into distance-fixed costs
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(loading and unloading) and distance-variable costs (transport, including power losses during
transmission). Generally, transport of biomass feedstocks is more expensive than that of energy
products. The difference between the cost for the transport of biomass and that for the
transport of energy is significantly higher than the incremental cost of building and operating a
power plant situated a long distance away from a transmission grid. Moller and Nielsen (2007)
have presented a method based on continuous cost-surface mapping using raster-based
geographical information systems (GISs). After mapping the wood-chip resources, the model
can be built using cost-distance functions, supply curves, and sensitivity analysis. This model
can be thereafter used to evaluate the transportation costs for selected plants yielding
bioenergy. Matthew (2006) has built a system that allows users to identify the least costly path
from the sources of wood to the mill, on the basis of road quality, speed limits, terrain, and
other transportation variables. Nilsson (1999) presents a dynamic simulation model for the
analysis of various delivery alternatives to improve and optimize the performance of the system
and to reduce the costs related to the harvest, transport, and storage of raw materials. This
model is based on other sub-models that associate the infrastructural and geographical aspects
with the weather conditions. Walsh (1998) has summarized the production cost for a
bioenergy-yielding crop, its supply curve, and its transportation costs to arrive at an estimate of
the end-cost of the biomass. The economics of biomass feedstocks in the United States and the
characteristics of several biomass feedstocks (such as agricultural residues, forestry residues,
solid municipal waste, and crops dedicated to bioenergy) are examined. Switchgrass and short-

rotation wood are the focuses in this report because of their large yield potential, wide
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geographical distribution, and broad commercial and research use. For the end-user of
bioenergy crops, the costs include both the price of crop production and the cost of

transporting the bioenergy crops from the site of production to the site of utilization.

Biomass resources in the southeast of the United States, such as urban wood waste and
forest residues, can be used to generate renewable energy and provide economic benefits to
rural communities. However, the feasibility of any biomass project depends on the availability
of woody biomass resources. Therefore, it is important to comprehensively consider the type of
available biomass material, the distance of its transport, and the available transportation
infrastructure (Langholtz 2006). Only after examining all these major issues, does it become

possible to evaluate the economic feasibility of using biomass resources as energy sources.

2.3.2. Biorefinery Siting Modeling

Biorefinery siting modeling is a key topic in the research related to biofuel production.
Considering the environmental impacts, economic influences, political incentives, and
availability of labor, biorefinery siting modeling is a complex procedure, and the interest in

modeling optimal sites for biorefineries has increased immensely among researchers.

Sperling (1984) presents a generalized framework for analyzing the relative
attractiveness of investments made in biomass fuel production at a disaggregate level, using a
system-approach to integrate site-specific considerations. On the basis of this approach, a
model has been built to site and size the prospective biomass-fuel manufacturing plants and to

identify and specify the critical factors for their operations. He points out that there are five
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crucial issues that most strongly influence the site-selection process and determination of the
size of biomass-fuel manufacturing plants. They are feedstock supply, fuel distribution, fuel
demand, co-product demand, and feedstock processing. The relationship between these five
factors is used to estimate cost functions. Generalized feedstock-supply curves, processing-cost
functions, and model transportation-cost functions have been formulated to specify the
feedstock production and fuel-transport subsystems. After calibrating the model for each local
area with local costs and conditions and fuel-demand patterns, this framework may be applied

in any area with abundant biomass.

Young et al. (1991) have developed a model to estimate the average total cost of
producing whole-tree chips from woody biomass for energy production. The total cost consists
of the costs related to the harvest, transportation, and stumpage of the woody biomass. This
model has been used to estimate the total costs of 62 potential locations for biomass-
manufacturing plants in Southeast United States. This model has applied a spatial analytical
component and uses a GIS to locate potential sites for biorefineries. This model also measures
the impact of market and nonmarket conditions on the economic availability of woody biomass.
The authors concluded that Northeast Florida, Southern Georgia, Southern Alabama, and the
Coastal Plain of South Carolina were low-cost regions for the production of woody biomass for
bioenergy. The South Delta of Louisiana, state of Kentucky, state of West Virginia, and the
mountains regions of Tennessee and Virginia were higher-cost regions.

Noon (1996) constructed a regional integrated biomass assessment (RIBA) system,

which consisted of two phases: 1) the descriptive phase that characterizes the farmgate cost
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and supply surface for biomass production over a given state; and 2) the analytical phase that
uses a transportation model to compute the marginal cost of supplying raw material to an
energy-producing plant at a prescribed level of demand. The model generates a marginal cost-
surface that illustrates the most promising regions for locating a bioethanol plant. A sequential
location model simulated the commercial development of ethanol-production facilities. This
model considers every road-network node as a potential site and generates a sequence of
probable plant locations. Furthermore, Noon and Daly (1996) designed a system to estimate
the total purchase and transportation costs of three types of wood-fuel under various levels of
demand. This system includes information on all possible wood-fuel supply points, demand
points, and product-movement costs.

Graham (1996) developed a GIS-based modeling system for analyzing the geographic
variation in potential bioenergy-feedstock supplies and optimal locations for locating bioenergy
facilities. The modeling system was designed for analyzing individual U.S. states, but it can be
adapted to any geographic region. The modeling system has four basic components: mapping
crop-land availability, calculating the expected yields and farmgate price, mapping the cost of
the delivered energy-crop feedstocks, and mapping the probable sites for the co-location of

bioenergy facilities.

Graham et al. (2000) constructed a regional-scale, GIS-based modeling system for
estimating the potential biomass supplies from energy crops. The system considers the regions
where energy crops could be grown, the spatial variability in their yield, and the transportation

costs associated with acquiring the feedstock needed for an energy facility. The potential costs
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and supplies of switchgrass in 11 U.S. states are estimated by this system. They concluded that
transportation costs are the lowest in lowa, North Dakota, and South Dakota; and are the
highest in South Carolina, Missouri, Georgia, and Alabama. They additionally estimated across
11 states, the costs of delivered feedstocks which ranged from $33 to $55 per dry ton for
supplying a facility that requires 100,000 ton/yr. Delivered feedstock costs for a 630,000 ton/yr
facility range from $36 to $58 per dry ton. Graham et al. (1997) and Husain et al. (1998) also

conducted insightful research on modeling for optimal biofuel sites.

2.4. Biofuels based on Cellulosic Ethanol

Cellulose is the most abundant organic compound on earth. Cellulosic materials are
considered to be the most potential raw materials for the production of ethanol. Although
there are multiple technical and economic challenges associated with the large-scale
production of ethanol from cellulosic biomass, including the collection and transportation of
the biomass raw material and the preprocessing or pretreatment associated with it, many

advances have been achieved in each of these areas during recent years.

The basic design for cellulosic ethanol is to extract the cellulose locked up in cell walls of
plants, break it down into its component sugars, and ferment these sugars into ethanol. People
have long ago established the method of making alcohol from grains, and now, a similar
process is used to convert farm products into ethanol for fuel (Wu 2007). Cellulosic-alcohol
fuels are produced from the woody parts of trees and plants, perennial grasses, or farm

residues. This technology is now being commercialized and has great long-term potential.
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“Cellulosic ethanol is projected to be much more cost-effective, environmentally beneficial and
to have a greater output-to-input ratio of energy than grain ethanol” (Solomon et al. 2007).
The environmental costs and benefits of biofuel production from lignocellulose-based energy
crops exceed those from food-based crops (Hill 2007). The new generation of biofuels derived
from lignocellulosic sources offers greatly reduced environmental impacts while simultaneously

avoiding potential conflicts between food and energy production (Dietter et al. 1997).

Solomon et al. (2007) investigated pilot plants and demonstration plants set up for the
manufacture of cellulosic ethanol in the United States, Canada, Japan, Sweden, and Denmark.
In the United States, the plants are grown in Alabama, California, Mississippi, Colorado, Arizona,
Arkansas, Hawaii, Louisiana, and Nebraska. They discussed many related factors such as the
economic investments needed for erecting the plants and the cost of biomass. More recently,
cellulosic biomass has been studied by many individuals and organizations. The topics deal with
a wide range of issues, from technological improvements in the field to the environmental
impacts and economic availabilities. The following citations constitute a brief list of many
articles written on cellulosic biofuels: Lynd (1996), Scurlock et al. (2000), Murray et al. (2003),
McLaughlin and Kszos (2005), Stephanopoulos (2007), Polagye et al. (2007), Granda et al.

(2007), Foyle et al. (2007), and Nakagawa et al. (2007).

18

www.manaraa.com



2.5. Grain-based Ethanol and Biofuels Based on Other Materials

2.5.1. Biofuels Based on Food stock: Grain-based Ethanol

Grain-based ethanol has a long history, and the technology and application involving its
production are quite mature. Biofuel production in the United States is currently dominated by
ethanol obtained from corn and biodiesel obtained from soybeans (Hamelinck and Faaij 2006a).
Currently, American corn-based ethanol is expensive, although it can help cut oil imports and
provides modest reductions in greenhouse-gas emissions compared to conventional gasoline.
Corn-ethanol has some risks. Because corn is a foodstuff for people and animals, diverting large
amounts of corn into ethanol production could push up prices and even cause shortages. In the
last decade, criticism aimed at the subsidization of grain-based ethanol has increased
(Hamelinck and Faaij 2006b). The economical efficiency and social benefits of this

manufacturing process are doubted (Charles et. al. 2008).

Currently, the total production of ethanol worldwide is approximately ten billion gallons.
In 2006, 18 percent of the corn crop in the United States was used for ethanol production.
Ethanol production from corn grain is predicted to grow in volume to 12 to 15 billion gallons
per year, and any additional growth in ethanol production will come from other raw materials
(Gray 2007). Other grain-based fuel studies are by Jorapur and Rajvanshi (1997), Pordesimo et

al. (2005), Sims et al. (2006), and Torney et al. (2007).
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2.5.2. Biofuels Based on Other Materials

Because of the existence of a wide variety of biomass, studies which examine other
types of biomass are ongoing. Gigler et al. (1999) discussed strategies related to the supply of
the willow plant for energy-producing purposes and develop minimum cost-supply strategies.
Gercel (2002) has evaluated the production of biofuel by the pyrolysis of sunflower-oil cake.
Das et al. (2004) detailed a type of biofuel obtained from the pyrolysis of the cashew nut shell.
Brumbley et al. (2007) have focused on sugarcane that has the potential to be a major crop in
the developing field of biomass production. It is the second fastest-growing tropical grass and
can be harvested multiple times before replanting. There are many studies that have been
published about new materials and technology in relation to biofuel production, see Allen and
Bennetto (1993), Angenent et al. (2004), Ieropoulos et al. (2005), Bullen et al. (2006), Davis and

Higson (2007), and Du et al. (2007).

2.6. Conclusions

The world is now in the age of biomass and biofuel technology development. Biomass
technology is far reaching from modern medicine and the pharmaceutical industry, to the fields
of energy and agriculture, to the manufacturing biofuel. Political instability in the Middle East
and the increasing demand from developing countries for crude oil are accelerating the interest
in bioenergy and biofuel technology. The combination of effects of new biomass technology,
the economic impact of increasing cost of crude oil, and government investment is creating a

new “bio-economy”.
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Transportation cost is a critical issue in low-cost biofuel production. Because
transportation costs account for a significant portion of the total biofuel cost, it is important to
appropriately locate new biofuel facilities to minimize transportation costs and maximize the
economic advantages. Site-selection for biofuel facilities is complex. A comprehensive
understanding of the mechanisms of feedstock supply, fuel distribution, fuel demand, co-
product demand, feedstock processing, local economic availability, and policy incentives is

needed.

The long-term potential for biofuels is in nonfood feedstock, such as agricultural and
forestry wastes, and fast-growing, cellulose-rich energy crops such as perennial grasses and
trees. Cellulosic ethanol can reduce greenhouse-gas pollution that results from present-day
biofuel crops. “The question is not whether biofuels will play a major part in the global
transportation-fuel market, but when and at what price” (Hunt 2006). Many countries are
actively encouraging the use of biomass for energy and prioritizing the development of the
necessary knowledge and technology for modern biomass-energy systems. This new renewable

energy source must displace the use of the traditional fossil-fuels.
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Chapter 3

3. Methods of Statistical Classification

3.1 Introduction

Statistical classification is a procedure in which individual cases are sorted into groups
based on one or more quantitative and/or qualitative characteristics in the cases. There are
numerous techniques and algorithms for classification problems (Agresti 2002), such as logistic
regression, linear discriminant analysis, cluster analysis, and classification trees (CTs); most
software packages already include these functions. Each technique has its own limitations and
advantages (Press and Wilson 1978, Dudoit et al. 2002). Logistic regression classifies
observations by building a regression function to estimate the probability of occurrence of an
event; therefore, it can only be used to classify the response variable with two levels, i.e.,
success or failure of the event (Menard 2002). Linear discriminant analysis (LDA) develops
classifications by determining linear combinations of the predictor variables to split the
observations, but the application of LDA has some important assumptions, i.e., multi-normality
of each group and homogeneity of covariance matrices (Balakrishnama and Ganapathiraju
1998). Cluster analysis separates observations into two or more unknown groups based on
combinations of predictor variables; results of the cluster analysis may differ significantly when
using different algorithms at different initial settings (Aldenderfer and Blashfield 1984).
Classification trees determine a set of statistical-based “if-then” conditions (instead of linear
equations) for predicting and classifying cases; the major advantage of CTs is the direct and

intuitive way by which they can be interpreted (Buntine 1992, Kim and Loh 2003).
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LDA was originally developed in 1936 and has wide applications in various fields (Fisher
1936, Altman 1968, Lachenbruch and Goldstein 1979, Klecka 1980, MclLachlan 1992, Altman et
al. 1994, Zhao et al. 1999). LDA functions are based on two assumptions: multi-normality in
each group and common covariance between groups. LDA has two limitations: (a) there must
be statistical significant difference in the mean vectors between groups, and (b) the number of
observations in each group must be greater than the number of predictors. If any one of these

assumptions is not met, the results may be unreliable (Eisenbeis 1977).

CT methods are an element of decision tree theory (Quinlan and Rivest 1989). A
decision tree (DT) is a decision support tool, which generally uses a graph or model of decisions
and their possible consequences. Although DT is a relatively new method, it is encompassed
within the larger body of data mining theory (Fayyad et al. 1996, Cherkassky and Mulier 1998).
DTs are popular in statistics as a predictive modeling technique. CTs are used for modeling and
predicting categorical response variables (e.g., gender, day of week, class, or group
membership) from a set of continuous predictors and/or categorical predictors. CTs are
promising classification methods because of their simple interpretation, high classification
accuracy, and ability to characterize complex interactions among variables. A popular reference
for the background of CTs from both historical and mathematical perspectives is the
monograph “Classification and Regression Trees” (CART) by Brieman et al. (1984). More
detailed algorithms and numerous applications of CTs are available (Frydman et al. 1985,
Buntine 1992, Kuhn and De Mori 1995, Loh and Shih 1997, Poon et al. 2001, Kim and Loh 2001,

Kim and Loh 2003).
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3.2 Linear Discriminant Analysis

Discriminant analysis, originally developed in 1936 by R.A. Fisher, is a multivariate
method of classification (Fisher 1936). Discriminant analysis is similar to regression analysis
except that the dependent variable is categorical rather than continuous (Draper and Smith
1981). In discriminant analysis, the intent is to predict class membership of individual
observations based on a set of predictor variables. LDA generally attempts to find linear
combinations of predictor variables that best separate the groups of observations. These

combinations are called discriminant functions (Mika et al. 1999).

Suppose there are K different groups, each assumed to have a multivariate normal
distribution with mean vectors u;, (k=1,...,K) and common covariance matrix 2. The actual
mean vectors and covariance matrices are almost always unknown; the maximum likelihood

estimates are used to estimate these parameters.

The idea of LDA is to classify observations x; to the group k, which minimize the within-

group variance, i.e.,
ke = argming (x; — g, )" E7H (% — ) (3.1)

Under multivariate normal assumptions, this is equivalent to finding the group that
maximizes the likelihood of the observation. Generally, we can estimate prior probability using
the proportion of the number of observations in each group to the total. For example, let

T, = % be the proportion of group k, such thatm; + ---+ mx = 1. Then, instead of maximizing
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the likelihood, the posterior probability is maximized; the observation belongs to a particular

group,
k = argmax;, [_%(xi — )T — ) + log”k] (3.2)
Simplifying (2), the k LDA functions are,
die(x) = 2" 27y = 5 T2 e + logmy (3.3)

When the assumption of common covariance matrix is not satisfied, an individual
covariance matrix for each group is used. This leads to quadratic discriminant analysis (QDA) as
the discriminating boundaries are quadratic curves instead of straight lines. Box’s M test is used
to test the homogeneity of variance (Box 1949, Geisser and Greenhouse 1958, Pintrich and De
Groot 1990). When the test is significant, QDA is used. QDA does not guarantee an improved

classification rate (Bouveyron 2007).

In the binary case, two linear discriminant functions are built as follows:
di(x) =x"27'py - %N1T2_1I«‘1 + logm, (3.4)
dy(x) = x"27 p, — %IvlzTE_lI«‘z + logm, (3.5)

If d; (x) > d,(x), the observation x will be assigned to group one, otherwise to group two. The
two discriminant functions can also be combined, i.e.,
d(x) = d;(x) — d,(x)

- 1 -
= xTZ7 iy — ) = 5 (a + 1) TE T (y — o) + log
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If d(x) > 0, the observation x will be assigned to group one, otherwise to group two. The last
two parts in the equation (3.6) are constant given a data set; the discriminant function
coefficients are D = X~ 1(u; — ;). The coefficients reflect the joint contribution of the
variables to the function, thereby showing the influence of each variable in the presence of the
others. The standardized coefficients D* = diag(X)D are computed by multiplying each
coefficient by the standard deviation of the corresponding variables. When the variable scales
differ substantially, the standardized coefficient vector provides better information about the

relative contribution of each variable to the canonical discriminant function (Rencher 1992).

Suppose there are two groups of p predictor variables, which allow for construction of
LDA functions using all predictors. A practical process is to choose significant variables using
stepwise procedure, which uses the Wilks’ Lambda statistics to identify significant independent
variables of the discriminant functions (Siotani et al. 1985, Rencher 1993). The Wilks’ Lambda
criterion maximally discriminates between groups by maximizing the multivariate F ratio in the

tests of differences between the group means.

Discriminant functions are built based on two assumptions, i.e., multi-normality in each
group and homogeneity of covariance between groups. If there are many categorical predictor
variables, these two assumptions are often violated, which may influence the quality of the
models and predictions. Other limitations with discriminant analysis are that the mean vectors
of the groups must be distinguishable and that the number of observations in each group must

be greater than the dimension of the variables. If the mean vectors are not different enough, it
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is hard for LDA to yield decent classification rates. If the observations in some groups are
limited, a stepwise procedure is required to select potential important variables before LDA can

be used.

While performing classification problem, the classification rate needs to be estimated
(Koehler and Erenguc 1990). One simple method is called re-substitution, which applies the
discriminant model to the original training data set to observe the frequency of correctly
classified observations. Re-substitution generally overestimates the correct classification rate

(Braga-Neto et al. 2004).

Another method for measuring the probability of correct classification is g-fold cross-
validation (Geisser 1974). For g-fold cross-validation, the original sample is partitioned into g
subsamples. A single subsample is retained for validation of the model built from the other g-1
subsamples each time. The process is repeated g times, with each of the g subsamples used
exactly once for validation. The results are combined to produce a single classification rate
estimate. A specific application is the “leave-one-out” cross-validation, where g equals the

number of observations in the original data set (Verbyla and Litvaitis 1989, Kohavi 1995).

In this thesis, linear discriminant functions are estimated with SPSS v16.0 (SPSS Inc. 2007)
using a stepwise procedure where the variable that minimizes the overall Wilks’ Lambda is
entered at each step. The minimum partial F to enter is 3.84 (a = 0.05), and maximum partial F
to remove is 2.71 (o = 0.10). SPSS provides the classification rate from re-substitution and from

“leave-one-out” cross-validation (SPSS Inc. 2007).
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3.3 Classification Tree

The machine-learning technique for inducing a DT from data is called decision tree
learning or (colloquially) “decision trees” (Young 2007). DT methods can be applied either to
continuous data, which are called regression trees (Chaudhuri et al. 1994), or to categorical
data, which are called classification trees (Kim et al. 2007). DT models have grown into a
powerful class of methods for examining complex relationships with various types of data.
Researchers and practitioners find great explanatory value in DT models. The main advantage
of a tree over the other models is the ease with which the model can be explicitly interpreted

(Loh 2002).

The Automatic Interaction Detection (AID) algorithm by Morgan and Sonquist (1963),
Kass (1975), and Fielding (1977) is the first implementations of the DT idea. The CART algorithm
followed AID and is a popular DT method (Brieman et al. 1984). Since CTs were first introduced,
many adaptations and extensions have been proposed, e.g., CART, C4.5, FACT, CHAID, FIRM,
GUIDE, QUEST, and CRUISE (Classification Rule with Unbiased Interaction Selection and

Estimation), see Wilkinson (1992).

In general, CTs build the rules by recursive binary or multiway partitioning of the data
space into subspaces that are increasingly homogeneous with respect to the class variable. The
homogeneous regions are called nodes. At each step in fitting a CT, an optimization is carried
out to select a node, a predictor variable, and a split-point for numeric variables or group of

codes for categorical variables that result in the most homogeneous subgroups for the data
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(Brieman et al. 1984). The splitting process continues until further subdivision no longer
increases the homogeneity of the nodes. When this occurs, a CT is said to be fully grown, and
the final regions are called terminal nodes. But the lower branches of a fully grown CT are
actually developed based on sampling error, which is called “over-fit,” and these lower
branches are typically pruned (Chou et al. 1989, Gelfand et al. 1991). Interpretation of CTs

increases in complexity as the number of terminal nodes increases.

In classification trees methods, selection bias is one of the most important issues.
Selection bias is a phenomenon that favors certain types of variables over others as the split
variable (Strobl et al. 2007). The definition of selection bias is that if the predictor variables are
independent of the class variable, they will not have the same chance of being selected for
splitting. There are two sources of bias: one is when variables differ significantly in their
numbers of splits, and the other is when variables differ in their proportions of missing values.
Selection bias is a serious problem in most classification tree techniques. For example, greedy
search algorithms, such as CART, have selection bias due to joint selection of the predictor
variable and the split point. CART has a preference in selecting variables with more splits. When
such bias is not prevented, the inferences for those variables can be flawed and misleading. Loh
and Shih (1997) showed that separation of the variable selection from the split-point selection
can avoid such selection bias. QUEST and CRUISE use this method to minimize or to prevent
selection bias. There are some other problems with other algorithms, e.g., CART and QUEST
only have binary splits; FACT, C4.5, CHAID, and FIRM have multiway splits but have selection

bias; FACT and FIRM do not prune; and C4.5 has multiway splits but only for categorical
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variables. CRUISE was selected in this research because of its exemption from the

aforementioned limitations.

3.4 CRUISE

CRUISE is a program for tree-structured classification (Kim and Loh 2001). It contains
several algorithms for the construction of CTs. CRUISE has three split methods, i.e., univariate
split, linear combination split, and univariate split with bivariate node models (Kim and Loh
2003). It also has three variable selection methods and three pruning methods. CRUISE has four
ways to handle missing values, which is an inherent problem with survey data. CRUISE is unique

among classification tree algorithms with the following properties:

° Fast computation speed by using multi-way splits,
° Practically free of selection bias,

° Sensitive to local interaction between variables,

o Robust to missing values in the learning sample.

The first variable selection method in CRUISE is the univariate split method, where each
split involves only one variable. Recall that the key to avoiding selection bias is separation of
variable selection from split-point selection. The univariate split method uses the following

steps to construct its split rules:
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Step 1. Selection of split variable

° One-dimensional method: Computes p-values from analysis of variance F-tests
for numerical variables and from contingency table y? -tests for categorical variables,

and then selects the variable with the smallest p-value.

° Two-dimensional method: Focuses on interactions between variables; tests the
most significant numerical variable, the most significant categorical variable, and the
most significant pair of numerical variables, the most significant pair of categorical
variables, and the most significant pair of numerical and categorical variables,

respectively; and then chooses the most significant variable.

Step 2. Selection of split point for the variable

. Because LDA is most effective when the data are normally distributed with the
same covariance matrix, if the selected variable X is a numerical variable, perform a Box-
Cox transformation on the X value first, and then apply LDA to the X values to find the
split points.

° If X is a categorical variable, it is first converted to a 0-1 vector, and then follows

the previous step as a new numerical variable.

Another split method of CRUISE is linear combination splits, which have greater flexibility,
prediction accuracy, and fewer terminal nodes, although this does not necessarily translate to

improved interpretation. Linear combination splits contain the following three steps:
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Step 1. Each categorical variable is transformed to a dummy vector and then projected onto the
largest discriminant coordinate; this maps each categorical variable into a numerical

variable.

Step 2. Perform a principal component analysis of the correlation matrix of the variables;
principal components with small eigenvalues are dropped to reduce the influence of

noise variables.

Step 3. LDA is applied to the remaining principal components to find the split.

The most novel split method in CRUISE is univariate splits with node models, which
retains univariate splits but fits a linear discriminant model to the best two-variable plot at each
node. The common goal in classification tree methods is to obtain a tree such that the learning
sample in each terminal node is quite homogeneous. When this cannot be achieved with a
small number of univariate splits, a large tree or an extremely simple one (due to over-pruning)
will be constructed. A possible solution is to use linear combination splits, but such splits are
usually difficult to interpret if they involve more than two variables. By building a tree with

node models, better classification performance without losing lucid interpretation is achieved.

To provide useful information, the tree structure must be easy to understand and free
of bias in the split selections. CRUISE uses two techniques to improve the interpretability of its
trees (Kim et al. 2007). First, it splits each node into multiple subnodes, with one for each class;
this reduces tree depth. Second, it selects variables based on both one-factor and two-factor

effects; therefore, CRUISE can immediately identify a variable with a significant two-factor
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interaction even when it does not have a significant one-factor effect. More importantly,
CRUISE uses a two-step approach to free itself from selection bias. First, it uses the p-values
from significance tests to select variables, which avoids the bias of the greedy search approach
caused by variables with unequal numbers of splits. It also automatically accounts for unequal
numbers of missing values using the degrees of freedom. CRUISE then uses bootstrap bias
correction to further reduce the bias due to differences between numerical and categorical
variables (Friedman 2001, Schapire 2002). The bootstrap correction is critical because the
amount of bias is dependent on many aspects of the data, such as sample size, number and

type of variables, missing value pattern, and configuration of the data points.
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Chapter 4

4. A Comparison of Linear Discriminant Analysis with Classification Trees for a

Forest Landowner Survey as a Case Study

4.1 Introduction

In 2005, a survey of 495 private forest landowners was conducted in seven counties of
Tennessee located in the Northern Cumberland Plateau region. The aim of the survey was to
differentiate between forest landowners who harvest trees from forest landowners who do not
harvest trees. Linear discriminant analysis (LDA) methods (Balakrishnama and Ganapathiraju
1998) are compared with classification tree (CT) methods (Brieman et. al. 1984, Kim and Loh
2001, Kim and Loh 2003) where the strengths and weaknesses of each method are noted for
the analysis of the forest landowner survey (Agresti 2002). The forest landowner survey was

used as a case study for the comparison of methods.

In the construction of the classification trees in this study, 13 combinations of variable
selection methods and split-point selection methods were used; optimal classification trees are
presented. Survey results showed that 73.3 percent of farmer forest landowners harvested
timber and 69.6 percent of non-farmers who had a length of residency beyond 36.5 years
harvested timber. For landowners who conducted commercial timber harvests, the importance
level of income from the harvest was the overriding factor relative to all other factors.
Discriminant analysis results supported the results of classification trees. However, the linear

discrimination functions and corresponding coefficients do not provide the level of two-
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dimensional detail of classification trees and split-points of predictors, which also detected
hidden interactions. The graphical representation of classification trees may provide useful and
easy-to-interpret information to foresters and other business professionals interested in

identifying characteristics of forest landowners likely to harvest timber.

4.2 The Survey Dataset

A private woodland owner survey was conducted in Tennessee in seven counties
located in the region known as the Northern Cumberland Plateau in 2005. The objective of the
survey was to characterize differences between forest landowners who harvest trees from
those forest landowners who do not harvest trees. The survey response rate was 55 percent
based on 1,012 verifiable forest landowners in the region (Longmire et al. 2007). Twenty-four
independent variables were examined, which related to years of residency, management
planning, importance of timber harvest income, areas of the forest land, number of tracts of
land owned, reasons for conducting timber harvests, demographic characteristics, etc. The
categorical dependent variables were “whether the forest landowners conducted timber

harvests”, and “whether the timber harvests were commercial or non-commercial harvests”.

Of the 495 usable survey responses, 243 respondents harvested timber. Of the 243
respondents who harvested timber, 111 conducted commercial timber harvests. LDA functions
and CT models were developed for three pairs of responses: 1) landowner who harvested

timber versus landowners who did not harvest timber, 2) forest landowners who distinguished
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between commercial and non-commercial timber harvests, and 3) forest landowners who

conducted commercial timber harvests versus all other forest landowners.

4.3 The Results of Linear Discriminant Analysis

4.3.1 Comparing “Timber Harvest” with “No Timber Harvest” Responses

Five significant variables (a0 = 0.05) selected by the stepwise procedure are given in
Table 4.1. The standardized canonical discriminant function coefficients, which measure the
relative importance of the selected variables (i.e., the larger absolute value of the coefficient
corresponds to greater discriminating ability) indicate that the independent variable “multi-
year management plan” was the most powerful discriminating variable, followed by “farmer

identification.”

Given the intention to compare these two groups, two classification functions were
used to assign cases into each group. For each observation, two classification scores were
computed for each function. The cases were assigned to the group whose function obtained
the higher score. Given the magnitude and signs of the coefficients (Table 4.2), it is evident that
“multi-year management plan” and “farmer identification” increased the likelihood of timber
harvest, followed by “years of residency” and “area of land in acres.” If the landowners owned
any land outside the study area, their probability of conducting a timber harvest declined. The
decrease in harvesting for other land ownership is surprising but may reflect second home or

non-resident landownership, which was not directly assessed by the survey.
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Table 4.1 Standardized canonical discriminant function coefficients distinguishing “timber
harvest” from “no timber harvest” respondents.

Survey Responses Designed as Variables

Coefficients

Multi-year plan or not? (categorical, “1” for “Yes”, “0” for “No”)

0.513

Farmer or not? (categorical, “1” for “Yes”, “0” for “No”)

0.418

Own any land outside the study area? (categorical, “1” for “Yes”, “0” for “No”)

-0.417

Years of residency (numeric)

0.414

Area of land in acres (numeric)

-0.382

Table 4.2 Fisher’s linear discriminant function coefficients distinguishing “timber harvest” from
“no timber harvest” respondents.

LDA functions
Variables
1 (Timber harvest) | 2 (No timber harvest)
Multi-year plan or not? 3.016 2.158
Farmer or not? 1.350 0.451
Own any land outside the study area? 0.840 1.626
Years of residency 0.106 0.083
Area of land in acres 0.001 0.000
Constant -3.162 -2.222

Table 4.3 Classification results of discriminant function, distinguishing “timber harvest” from
“no timber harvest” respondents.

Predicted
Actual

1 (Timber harvest) | 2 (No timber harvest) | Total
1 (Timber harvest) 165 78 243

Re-substitution
2 (No timber harvest) 87 165 252
1 (Timber harvest) 158 85 243

Cross-validation
2 (No timber harvest) 89 163 252
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One hundred and sixty-five of 243 respondents from the timber harvest group were
correctly classified, and 165 of 252 respondents from the group who did not harvest timber
were correctly classified (Table 4.3). The overall correct classification rate was 66.7 percent. The
“leave-one-out” cross-validation classification rate (Braga-Neto et al. 2004) was slightly lower at
64.8 percent. Given these classification rates, it seems plausible using LDA to identify factors

that distinguish forest landowners who harvest timber from those who do not harvest timber.

Because the survey data set contained several categorical variables, the assumption of
multi-normality was not satisfied. Box’s M test (Geisser and Greenhouse 1958) was statistically
significant at a = 0.05, which meant there were no homogeneous covariance matrices. QDA
was used, but the classification rate did not improve. Therefore, the common covariance matrix

to build LDA functions was assumed in the analysis.

4.3.2 Comparing “Commercial Timber Harvest” with “Non-commercial Timber Harvest”

Responses

Three variables were identified as being statistically significant (o« = 0.05) using the
stepwise procedure. The “importance of income from timber harvest” was the most significant

variable (Table 4.4 and

Table 4.5). The “the number of tracts” owned by the landowners and “years of

residency” were also significant predictors.
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Approximately 62.2 percent of the 111 commercial timber harvest respondents were

classified correctly. Nearly 81.7 percent of the 126 non-commercial timber harvest respondents

Table 4.4 Standardized canonical discriminant function coefficients distinguishing “commercial
timber harvest” from “non-commercial timber harvest” respondents.

Survey Responses Designed as Variables

Coefficients

Importance of income from timber harvest

(categorical, from 1 “not important” to 5 “very important”)

0.663

The number of tracts (numeric)

0.550

Years of residency (numeric)

0.349

Table 4.5 Fisher’s linear discriminant function coefficients distinguishing “commercial timber
harvest” from “non-commercial timber harvest” respondents.

LDA functions
Variables
1 (Commercial) | 2 (Non-commercial)
Importance of income from timber harvest 1.750 1.092
The number of tracts 1.154 0.734
Years of residency 0.078 0.055
constant -5.223 -2.506

Table 4.6 Classification results of discriminant function distinguishing “commercial timber
harvest” from “non-commercial timber harvest” respondents.

Actual

Predicted

1 (Commercial) | 2 (Non-commercial) | Total
1 (Commercial) 69 42 111

Re-substitution
2 (Non-commercial) 23 103 126
1 (Commercial) 69 42 111

Cross-validation
2 (Non-commercial) 23 103 126
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were correctly assigned to the group. The overall “leave-one-out” cross-validation classification

rate was 72.6 percent (

Table 4.6).

4.3.3 Comparing “Commercial Harvest” with All Other Responses

Five variables were chosen as being statistically significant (o. = 0.05) using the stepwise
procedure to build the linear discriminant function to separate respondents conducting a
commercial timber harvest from all other respondents (Table 4.7). Similar significant variables

occurred for this model as in previous models, e.g., “importance of income from the timber

” n u

harvest,” “years of residency,” “farmer identification,” “multi-year plan,” and “area of land.”

Linear discriminant function coefficients further support these results (

Table 4.8). The correct classification rate was 82.0 percent from re-substitution and 81.6

percent from cross-validation (

Table 4.9).

4.4 The Result of Classification Trees

4.4.1 Comparing “Timber Harvest” with “No Timber Harvest” Responses

Thirteen CTs were initially developed using different combinations of split methods,
variable selection methods, and split-point selection methods (Table 4.10). The split method of
linear combination splits yielded the largest correct classification rate of 62.0 percent from
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cross-validation, but the improvement was not distinct compared with 60.4 percent using

univariate split (Kim and Loh 2001, Kim and Loh 2003). The split method of univariate splits with

Table 4.7 Standardized canonical discriminant function coefficients distinguishing “commercial
timber harvest” from all other respondents.

Survey Responses Designed as Variables

Coefficients

Importance of income from timber harvest

(categorical, from 1 “not important” to 5 “very important”) 0532
Years of residency (numeric) 0.436
Farmer or not? (categorical, “1” for “Yes”, “0” for “No”) 0.371
Multi-year plan or not? (categorical, “1” for “Yes”, “0” for “No”) 0.301
Area of land in acres (numeric) 0.263

Table 4.8 Fisher’s linear discriminant function coefficients distinguishing “commercial timber
harvest” from all other respondents.

LDA functions
Variables
1 (Commercial harvest) | 2 (All others)
Importance of income from timber harvest 1.960 1.328
Years of residency 0.121 0.082
Farmer or not? 1.428 0.327
Multi-year plan or not? 3.269 2.316
Area of land in acres 0.001 -0.001
constant -6.830 -2.596

Table 4.9 Classification results of discriminant function distinguishing “commercial timber
harvest” from all other respondents.

Actual

Predicted

1 (Commercial harvest) | 2 (All others)

Total
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1 (Commercial harvest) 45 66 111
Re-substitution

2 (All others) 22 356 378

1 (Commercial harvest) 44 67 111
Cross-validation

2 (All others) 23 355 378

Table 4.10 Comparison of the performance of 13 classification trees of comparing
“timber harvest” with “no timber harvest” respondents’.

# of
Variable . - terminal Re-substitution Cross-validation
. K Split method/ Pairwise nodes of . X e . e .
Split type selection X . Important variables misclassification misclassification
variable selection method 1-SE
method rate rate
tree/0-SE
tree
q44_farmer;q41_yrres;
Exhaustive search 5/5 gql4_plan;q36_Indout; 0.3333 0.3960
1D ql4_plan;
q44_farmer; q41_yrres;
Univariate Linear discriminant analysis 10/10 ql4_plan; q36_Indout; 0.3030 0.4000
splits q38_live; q54_income;
Exhaustive search 6/6 939_arealife; q1_acres; 0.3010 0.4000
0 q2_pctwd; q50_yrborn
Linear discriminant analysis 4/8 q39_arealife; q1_acres 0.3535 0.3919
Linear
combination 2/2 0.2909 0.3798
splits
Exhaustive search q39_arealife;
/ MANOVA 71 q45_impwdinc 0.3859 0.3939
Exhaustive search q44_farmer; q41_yrres;
- — .24 404
/ LDF 5/6 ql4_plan; q36_Indout 0.2485 0.4040
1D Linear discriminant analysis q39_arealife
/ MANOVA 11 q45_impwdinc 0.3859 0.3899
q44_farmer;
Linear discriminant analysis q3_tracts g54_income;
/ LDF 2/2 430_prptxfair 0.3273 0.4141
45_i di
Univariate Exhaustive search quEI:rZ\ZIi;ZC
lits with 1/2 - 0.3859 0.3939
splits wi / MANOVA / q45_impwdinc
node models -
q39_arealife;
Exhaustive search g43_employ
2/4 - 3111 4182
/ LDF / g54_income; 03 0.418
20 q14_plan q54_income
Linear discriminant analysis q39_arealife
/ MANOVA 11 q45_impwdinc 03859 0.3899
q44_farmer; q14_plan;
Linear discriminant analysis q3_tracts g54_income;
/ LDF 3/3 q45_impwdinc q48_educ 02909 0.4323

1 “0-SE tree” is the full tree with the smallest cross-validation (CV) estimate of error; “1-SE tree” is the
smallest subtree with CV estimate of error within one standard error of the minimum.
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node models did not improve prediction performance in this case. Therefore, the split method

of univariate splits was selected for the final CT model.

The final CT model presented for comparing “timber harvest” with “no timber harvest”

responses came from the following CT methods:

° Split type: Univariate splits
° Variable Selection method: One dimensional
° Split-point selection method: Exhaustive search

The important variables identified in the CT model (Figure 4.1) are the same as those in

the corresponding LDA model (Table 4.1):

° Farmer or not? (categorical, “1” for “Yes”, “0” for “No”)

° Years of residency (numeric)

Multi-year plan or not? (categorical, “1” for “Yes”, “0” for “No”)

° Own any land outside the study area? (categorical, “1” for “Yes”, “0” for “No”)

Of all 495 responses, 243 landowners harvested timber and 252 did not harvest timber.
The most significant variable of the CT was “farmer identification.” Sixty-six of the 90 farmers
(73.3 percent) responding to the survey harvested timber. This result does not conflict with the
LDA results discussed in the previous section. However, CTs provide much more detailed
information on interactions within the group of “non-farmers” than does LDA. Within the group
of non-farmers conducting timber harvests, the most significant characteristic (o« = 0.05) was

“years of residency.” For non-farmers who lived at their residence for less than or equal to 36.5
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<=36.5 years

All Observations: 495

Timber Harvest: 243

No Timber Harvest: 252

Farmer or not?

No

Yes

Timber Harvest: 177

No Timber Harvest: 228

Timber Harvest: 66

No Timber Harvest: 24

Years of residency?

N

Timber Harvest: 145

o Timber Harvest: 214

Multi-year plan?

No

Timber Harvest: 48

No Timber Harvest

>36.5 years

Timber Harvest: 32

No Timber Harvest: 14

Yes

1117

Timber Harvest: 97

No Timber Harvest: 97

Own any land outsidg

the study area or not?

Yes

Timber Harvest: 21

No Timber Harvest: 39

No

Timber Harvest: 76

No Timber Harvest: 58

“no timber harvest” respondents.
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years, only 145 of 359 (40.4 percent) respondents in this subgroup had harvested timber. For
non-farmers who lived at their residence for less than or equal to 36.5 years and had a multi-
year management plan, 97 of the 194 respondents (50.0 percent) in this subgroup had
harvested timber. If the non-farmer lived at their residence for less than or equal to 36.5 years,
had a multi-year management plan, and did not own any other land outside the study area, 76
of 134 of this respondent subgroup (about 56.7 percent) had harvested timber. The optimal CT
correctly classified 330 of the 495 respondents. The re-substitution correct classification rate of

66.7 percent was the same as that of discriminant analysis.

4.4.2 Comparing “Commercial Timber Harvest” with “Non-commercial Timber Harvest”

Responses

Of the 243 respondents who harvested timber, 111 conducted a “commercial timber
harvest,” and 126 conducted a “non-commercial timber harvest.” Six landowners did not
respond to the type of timber harvests. Several combinations of split method and variable
selection methods were compared before developing an optimal CT (Table 4.11). The optimal

CT came from univariate split and the one dimensional variable selection method.

The only significant variable (o = 0.05) in this CT (Figure 4.2) was “importance level of
income” expected from the timber harvest. Recall that the respondents were asked to rank
importance based on an ordinal scale from one to five (i.e., 1 = “not important,” 2 = “of little
importance,” 3 = “somewhat important,” 4 = “important,” and 5 = “very important”). The split

point for this tree occurred at the ordinal rank of “not important” and all the other levels were
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Table 4.11 Comparison of the performance of potential classification trees based on 243
observations who harvested timber before’.

# of
Variable terminal Re-substitution Cross-validation
. X . nodes of . X _— . s
Split type selection Split method 1-SE Important variables misclassification misclassification
method tree/0-SE rate rate
tree
. g45_impwdinc
L 1D Exhaustive search 2/19 0.2911 0.3249
Univariate
lit
SPiits 2D Exhaustive search 2/2 Q1_acres 03038 03333
Linear
combination 2/2 0.2152 0.3038
splits
1D Exhaustive g3_tracts;
o search MANOVA 1 q45_impwdinc 0.2827 0.2869
Univariate
splits with Exhaustive g3_tracts;
node models A .
2D search MANOVA 1 q45_impwdinc 0.2827 0.2911

All Harvest: 237

Commercial Harvest: 111

Non-Commercial Harvest: 126

Importance of income from tin|\ber harvest

Not Important Others
Commercial Harvest: 33 Commercial Harvest: 78
Non-Commercial Harvest: 90 Non-Commercial Harvest: 36

Figure 4.2 The 1-SE classification tree was built using CRUISE; comparing “commercial
timber harvest” with “non-commercial timber harvest” respondents.

2 Some combinations of variable selection methods and splits methods were ignored in Table 2 because
from Table 1 we knew those combinations would not make any improvement.
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combined in one subgroup. For those who considered that income from a timber harvest was
at least “somewhat important,” more than 68.4 percent conducted a commercial timber
harvest. The CT correctly classified 70.9 percent of respondents who had conducted a timber
harvest. This classification rate was 72.6 percent using LDA. In case of trees with only one split
for “importance of income,” there does not seem to be any additional information provided

from the CT relative to the LDA model.

4.4.3 Comparing “Commercial Timber Harvest” with All Other Reponses

The usefulness of CTs is further illustrated by the third tree constructed by comparing
“commercial timber harvest” respondents with all other respondents (Figure 4.3). The
“importance level of income” from the timber harvest is still the most significant variable (a =
0.05), influencing the decision to conduct a commercial timber harvest (22.4 percent of all
respondents). Seventy-two percent of respondents who conducted a commercial timber
harvest considered that “importance of income” was at least “somewhat important.” For the
subgroup where “importance of income” was at least “somewhat important” and respondents
had a “multi-year management plan,” the “years of residency” was influential on the decision
to conduct a commercial timber harvest. For the subgroup of the respondents who have lived
in their current residence for more than 16.5 years, 40 of 62 in this subgroup (64.5 percent) had
conducted a commercial timber harvest. Surprisingly, “farmer identification” is less important
(i.e., declines to lower branches of the tree) as a split variable, when respondents conducting a
commercial timber harvest are compared with all other respondents. The CT correctly classified

52.3 percent of respondents conducting a commercial timber harvests and 92.6 percent of all
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Years of residency

>16.5 years

Multi-year plan?

Commercial: 111

Others: 378

Importance of income

from timber harvest?

Others

Commercial: 80

Others: 117

Yes

Commercial: 61

Others: 58

No

Commercial: 31

Others: 261

Commercial: 19

Commercial: 40

Others: 22

Others: 59
<=16.5 years
Commercial: 21
Others: 36
Farmer or not?
No

Yes

Commercial: 10

Others: 6

Area of land in acres

Commercial: 11

Others: 30

>110.5 acres

<=110.5 acres

Commercial: 8

Others: 0

Commercial: 3

Others: 30

Figure 4.3 The 1-SE classification tree was built using CRUISE; comparing “commercial
timber harvest” with all other respondents.
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other respondents. This CT model discriminated the “non-commercial harvest” and “non-
harvest” landowners quite well. The overall classification rate was 83.4 percent, which was

slightly higher than the 82.0 percent of LDA model.

The CTs discussed above identify detailed subgroups and interactions, which are not
given by LDA models alone. These tree structures may provide practical information for
foresters and land managers in identifying characteristics of forest landowners who are likely to
conduct commercial timber harvests and also in discriminating forest landowners who are not

likely to conduct commercial timber harvests.

4.5 Conclusion

In this chapter, LDA and CT methods were compared using a survey of forest
landowners as a case study. The survey consisted of 495 private forest landowners located in
the Northern Cumberland Plateau region of Tennessee. Three pairs of LDA models and CTs
were constructed and compared. LDA models and CTs identified approximately the same

significant variables and had similar classification rates.

Survey results showed that 73.3 percent of farmer forest landowners harvested timber,
and 69.6 percent of non-farmers who had a length of residency beyond 36.5 years harvested
timber. For forest landowners who conducted commercial timber harvests, the importance
level of income from the harvest was the overriding factor relative to all other factors.

Discriminant analysis results supported the results of CTs. However, the linear discrimination
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functions and corresponding coefficients did not provide the level of two-dimensional detail of

CTs, which also detected hidden interactions.

Given the stringent assumptions of LDA, the CT methods may offer some advantage in
robustness for data structure, in capability for detecting interactions between independent
variables, in two-dimensional representation of the discriminating rules, and in straightforward
interpretation. These methods provide foresters and land managers with objective, and
scientific-based tools to assess characteristics of forest landowners likely to harvest tree

commercially. These methods also characterize forest landowners not likely to harvest timber.
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Chapter 5

5. Optimal Biorefinery Sites in TX and LA Based on Trucking Transportation
Costs

5.1 Introduction

Energy Information Agency (2006) predicted that by 2020, the world’s energy
consumption will be 40 percent higher than it is today. Qil is located in high-cost, complex
geopolitical environments and as noted in the U.S. Forest Service Research and Development
Strategic Plan for the next several years (2006), decreasing economic dependence on
conventional energy supplies will necessitate the need for improved energy efficiency and
conservation. Energy efficiency and conservation are only part of the solution to meet the
demand for more energy. Liquid fuels and value-added chemicals from biomass will be required
to meet the greater energy demand and represent low-risk solutions to providing a renewable,

sustainable and secure domestic energy supply.

U.S. Forest Service Southern Research Station and University of Tennessee Forest
Product Center are supporting a large research project on developing a real-time, web-based
optimal siting system for biomass energy producing and distribution facilities for the 33 Eastern
United States (Hodges et al. 2007). The focus of this proposal is on identifying and projecting
spatial comparative advantage for delivered wood and agricultural fiber costs based on
resource costs, logging costs and transportation costs. While several prior studies have

examined the availability of wood for biomass or the transportation costs associated with
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cellulosic biomass (Young et al. 1991, Noon and Day 1997, Jensen et al. 2002, Perlak et al. 2005,
Langholtz et al. 2006), this project will be the first to incorporate all costs associated with
providing woody biomass to biorefineries and to evaluate the economic supply from all sources
(e.g., standing trees, logging residues, mill residues, etc.).

This project will develop geo-referenced estimates of logging and transportation costs
and incorporate these costs into an existing timber supply model to develop cost curves for
woody biomass delivered to biorefineries at different locations throughout the southern United
States. This project consists of three modules that will be aggregated to provide spatially
explicit estimates of standing volume and residues available for bioenergy: 1) Sub-Regional
Timber Supply (SRTS) model (Abt et al. 2000) to utilize USDA Forest Service inventory data and
an economic supply and demand framework to project timber inventory, supply, and price into
the future; 2) a GIS-based logging cost model to estimate the costs associated with harvesting
standing trees; and 3) a transportation model to calculate the optimal paths and costs of
transporting biomass to potential biorefinery sites.

The strategy of ensuring long-term sustainable bioenergy is the assessment of the
economic availability of woody and agricultural-derived biomass. The optimal siting strategy
must demonstrate the sustainability of a feedstock that will support profitability of the facility
(Young et al. 1991). The goal of the project is to develop a real-time, web-based siting model
for optimally siting cellulosic biofuel facilities in the eastern U.S. The objectives of this project

are:
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e Develop a web-based biorefinery economic siting model for forest and agricultural
resources that exists in public domain.

e Develop a Microsoft sQL® database of resource data (forest and agricultural feedstocks).

e Develop resource costs for database.

e Develop a transportation cost model for database.

e Develop a harvesting cost model for database.

e Develop a web-base software tool to search for optimal biorefinery sites

(www.BioSAT.net).

e Update BioSAT real-time as new data becomes available.

The scope of this research covers 33 eastern United States. The smallest resolution is zip code.

In this chapter, mill residues are considered as the cellulosic feedstock and the sum of
primary wood manufacturing mill residues in a 40 mile radius area is defined as “total mill
residue”. Supply curves using trucking transportation costs are constructed for each zip code
based on the “Million Ton Supply” categories for woody feedstocks, where we assumes an
annual wood consumption for a biorefinery to be one million tons mill residues. Transportation
cost by truck are calculated and used to choose optimal biorefinery locations. The method is
used to decide the optimal biorefinery locations in Texas (TX) and Louisiana (LA); the top five
sites are presented. In the complete study, the methods will be generalized to the 33 eastern
states. The flow chart of the supply curve method based on trucking costs is illustrated in

Figure 5.1.
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Select State (e.g., TX)
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Obtain Biomass quantity by zip code
(e.g., mill residue)

If the quantity in certain zip
code is 0, delete this zip code.

v

Find all the neighboring zip codes
(e.g., in 40 mile radius)

v

Sum all mill residue quantities in zip
codes in 40 miles together as the
“total mill residue”.

A

v

For each candidate zip code, calculate
the trucking cost for each pair of zip
codes in 40 miles.

A\ 4

Only consider grouping of zip
codes with “total mill residue”
quantity greater than
1,000,000 ton.

v

A

Sort by the cost per truck; construct
supply curves based on aggregate
biomass quantities and transportation
costs for each candidate zip code.

v

Find the zip code with the lowest
transportation cost per ton for
1,000,000 ton mill residue.

v

Optimal locations are found.

Figure 5.1 Flow chart of biorefinery siting methodology based on trucking cost.
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5.2 Biomass Residue Quantities

In this stage, five categories of residues are considered as the feedstocks for the
biorefinery facilities, which are logging residues, treatment thinning on timberland, urban wood
waste, mill residues and other removals. Each category stands for an exclusive kind of woody
residue sources that can be used as the cellulosic feedstocks to produce bioethanol in

biorefineries.

e Logging residues: The unused portions of growing-stock and non-growing-stock trees
cut or killed by logging and left in the woods.

e Treatment thinning on timberland: The material generated from fuel treatment
operations and thinning designed to reduce the risk of loss to wildfire on timberlands.

e Urban wood waste: Urban wood wastes include wood (discarded furniture, pallets,
containers, packaging materials and lumber scraps), yard and tree trimmings, and
construction and demolition wood.

e Mill Residues: The Forest Service classifies primary mill residues into three categories:
bark, coarse residues (chunks and slabs) and fine residues (shavings and sawdust).

e Other removals: Unutilized wood volume from cut or otherwise killed growing stock,
from cultural operations such as pre-commercial thinning, or from timberland clearing.
Does not include volume removed from inventory through reclassification of timberland
to productive reserved forest land.

All the data are by zip code using USDA Forest Service Forest Inventory and Analysis data (2003-

2005).
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All these woody residue categories can be a significant source of bioenergy feedstock
depending on location and concentration, type of material, acquisition, transportation and
processing costs. Forestlands are distributed throughout the U.S. and the economics, site-
specific characteristics and costs affect the recoverability of logging residues, thinning, and
other removals. Primary wood manufacturing mill residues are a relatively convenient and
stable source of biomass for cellulosic ethanol because they tend to be clean, uniform,
concentrated, have low moisture content, and do not require harvesting costs. These traits
make such mill residues desirable feedstocks for energy and biomass needs. The following
analysis focused on the mill residues to find the optimal locations of biorefineries in TX and LA,

see Figure 5.2.

Total Mill Residuals {dry tons)
[ ]=150000

1150000 - <300,000

I 300,000 - <450,000

I 450,000 - <600,000

I 600,000 - <750,000

I 750,000 +

Figure 5.2 The distribution of mill residues quantities in LA and TX.
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5.3 Calculating Trucking Transportation Costs

Transportation cost, the cost of moving feedstock or products, is an important
component of the overall costs for recovering energy from biomass. It’s a very important issue
in the decision of locating for bioenergy facilities. Transportation cost typically represents a
substantial portion of the total costs of woody biomass, due to the low value of the wood,
distances traveled for delivery, and increasing price of diesel fuel. Evaluating the economic
feasibility of bioenergy requires comprehensively addressing transportation costs.
Transportation cost is highly determined by the geographical location of forests, mills and
potential biorefinery facilities.

There are various transportation modes, truck, rail, freight, or the combination of them.
In this chapter, trucking transportation costs are analyzed. Trucking costs can be segmented by
fixed and variable costs. The components making up variable costs are fuel, labor, tires, and
maintenance (Berwick and Farooq 2003).

The fuel price is an external variable that depends on the current market rates, which
may vary depend on supply and demand conditions for a geographical location. Meanwhile,
fuel economy is a function of engine horsepower, speed, terrain, wind and weight; and the
speed is a function of engine horsepower, terrain, wind and weight. In this study, the gross
vehicle weight is set at 80,000 pounds, which is the current maximum limitation in TX and LA.
The normal tractor and trailer weight are respectively 13,900 pounds and 23,700 pounds;

therefore the full pay load is 42,400 pounds. The fuel cost for round trip is calculated as follows:

fuel price per gallon fuel price per gallon .. . .
fuel cost=( Prceper e prcepers )xdrlvmg distance miles (5.1)
5.182985 6.64982
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where, 5.182985 is miles per gallon (MPG) when the truck is loaded, and 6.64982 is MPG when

the truck is empty.

The labor cost is a readily known variable for paid drivers and is accounted for in the

model by time. The average labor cost in LA and TX is set at $15.63/hour.

driving time min

labor cost = 2 X labor cost per hour X "

(5.2)

The tire cost consists of tire price and tire wear cost. Tires are weight sensitive and wear more

with more weight. In average, the tire cost per mile is set at $0.06155/mile.

tire cost = 2 X 0.06155 X driving distance miles (5.3)

The maintenance cost depends on the age of the equipment, weight and operating conditions.

The average maintenance cost is estimated at $0.096/mile:

maintenance cost = 2 X 0.096 X driving distance miles (5.4)

Components making up fixed costs are equipment costs, license fees, insurance, and overhead
expenses. Fixed costs vary in different geographic area and by size of firm. These costs are
totaled by category and are estimated on a per mile basis. The total cost per year is estimated
at $44276 and the number of driving miles per year is assumed at 100,000 miles. Fix costs for a

round trip are:

fixed cost = 2 X 0.44 X driving distance miles (5.5)
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Combining all variable and fixed costs in formulas (5.1) through (5.5), give the transportation

costs per truck for a round trip haul between any pair of zip codes as:

cost per truck round trip =

fuel price per gallon fuel price per gallon
( 5.182985 * 6.64982
driving time min
60

) X driving distance miles

+ 2 X labor cost per hour X

+ 2 X 0.06155 X driving distance miles
+ 2 X 0.096 X driving distance miles
+ 2 X 0.44 X driving distance miles (5.6)

where, the unit of driving distance is mile, and the unit of driving time is minute;
fuel price per gallon is set at $4.66/gallon;
labor cost per hour is set at $15.63/hour;
and 5.182985 is MPG when the truck is loaded; 6.64982 is MPG when the truck is empty;
and 0.06155 is the estimated tire cost per mile;
and 0.096 is the estimated maintenance cost per mile;
and 0.44 is the estimated fixed cost per miles.

Note that the transportation cost calculated from formula (5.6) is the cost for transportation
companies, it's not the real cost that the customers may pay if profit margins are included

resulting in a trucking rate.

Total transportation cost is calculated by multiplying cost per truck for a round trip haul
and the number of trucks needed to transport all mill residues to the destination. Note in
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formula (5.7), the number of trucks needed is not ceiled, so the total cost may be slightly lower

than the real cost:

. . mill residue quantities
total transportaion cost = cost per truck round trip X 42,40% (5.7)

2204.59

where 42,400 pounds is the pay load of per truck; and one ton = 2204.59 pounds.

Dividing the total cost by the total mill residue quantities, gives the transportation cost per ton.

This value is a key measure in selecting an optimal zip code.

total cost

transportation cost per ton = (5.8)

mill redsidue quantities

5.4 Finding Neighboring Zip codes

In order to gather sufficient cellulosic feedstocks to satisfy the demand of a biorefinery,
it is necessary to collect mill residue in the neighboring zip codes from the zip code where the
potential biorefinery is located. The closer the supply locations, the lower the typical trucking
transportation costs. This may not be true if a geographic feature such as a mountain, river,
large city, or large water reservoir restrict transportation networks of the neighboring zip codes.
In this research, zip codes within a 40 mile radius are analyzed as neighboring zip codes. The
sum of the mill residues in a 40 mile radius is generally sufficient in eastern TX and LA to meet

the annual demand of a biorefinery (Liu et al. 2008).

For a given zip code, its sphere distances to other zip code are calculated by utilizing the

longitudes and latitudes (http://en.wikipedia.org/wiki/Earth radius, referenced 06/20/2008).
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D = /(Md#? + (N cos$ di)? (5.9)

where ¢ --- the mean latitude,
d¢ --- difference in latitude,

dA --- difference of longitude (in radians),

M --- Earth's radius of curvature in the (north-south) meridian at ¢,
N --- radius of curvature in the prime normalto M at ¢ .

All zip codes with a sphere distance no more than 40 miles are defined as neighboring zip codes

of a centric zip code. Future research will include an 80 mile radius.

For each neighboring zip code, the driving distance and driving time to the given zip
code is computed from MapPoint (Microsoft Inc. 2006). From equation (5.6), the transportation
cost per truck for a round trip haul between any pair of zip codes is estimated using the driving

distance and driving time.

5.5 Top Biorefineries Locations in LA and TX by Zip code

In any zip code for LA and TX, the quantity of mill residues available is less than
1,000,000 tons, the assumed maximum annual demand for a biorefinery that would produce
70,000 gallons of ethanol (Timber Mart South 2008). The sum of the mill residue quantities in
the neighboring zip codes within a 40 mile radius is defined as the “total mill residue” of the

center zip code where the biorefinery is located.

62

www.manaraa.com



There are four zip codes, 75930, 75959, 75948, and 77331 in Texas, containing total mill

residue quantities greater than 1,000,000 million tons (Table 5.1). These zip codes are

highlighted in red color in Figure 5.3. These four zip codes are considered as potential

biorefinery locations, and labeled as green dots in map in Figure 5.3.

The supply curves are estimated by sorting the mill residue data by transportation costs

per truck for a round trip haul from a zip code with a biorefinery site. The four potential zip

codes were examined using this method (Figure 5.4).

The zip code 75928 has the lowest

trucking cost per ton. For a supply of 1,000,000 annual tons mill residues, the transportation

cost is approximately $5.20/ton for this zip code. This zip code also has the highest total of mill

residues in Texas, which is 1,331,079 ton.

Table 5.1 The four zip codes with total mill residue quantities beyond 1,000,000 tons in Texas.

State Zip Code Total Mill Residue (ton) Total Transportation Cost (S)
X 75948 1331078.99 5895383.15
X 75930 1105029.92 5019429.08
X 77331 1021945.5 4821877.64
TX 75959 1021793.15 4546664.57
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Figure 5.3 The distribution of total mill residues quantities within a 40 mile radius for eastern
TX and the four optimal biorefinery locations.
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Figure 5.4 Supply curves for four candidate biorefinery locations in TX.
There are 19 zip codes containing total mill residue quantities greater than 1,000,000 tons for a
40 mile procurement radius in LA. They are, in decreasing order of mill residue quantities,
71460, 71462, 71406, 71426, 71449, 71065, 71486, 71458, 71429, 71497, 71457, 71002, 71414,
71066, 71063, 71419, 71038, 71070, and 71450 (Table 5.2), see the corresponding red areas in
Figure 5.5. In the first step, five zip codes were picked up as potential sites, 71460, 71462,
714458, 71070, and 71038. These zip codes are located in dispersive geographic regions in LA
and in that particular region correspond to higher total mill residue quantities (Figure 5.6). The
supply curves for these five potential biorefinery locations are presented in Figure 5.7. The zip
codes of 71460 and 71462 correspond to lower transportation costs of approximately
$3.50/ton and $3.90/ton, respectively. When compared with the other three zip codes the

transportation costs exceed $5.50/ton. From a geographic perspective, the zip codes 71460 and

65

www.manaraa.com



71462 are both near the Toledo Bend Reservoir, while the other three zip codes are located far

away from the Toledo Bend Reservoir (Figure 5.7). Given the transportation cost estimates, the

zip codes near Toledo Bend Reservoir are examined in more detail. There are 11 zip codes near

the Toledo Bend Reservoir containing total mill residue quantities greater than one million tons.

Seven of these zip codes contain the total mill residue quantities greater than that of the zip

code 71458, which has been examined in the initial step of the selection process. These seven

zip codes will be the potential biorefinery candidates (Figure 5.8). The supply curves for these

seven potential biorefinery locations are illustrated in Figure 5.9.

Table 5.2 The 19 zip codes with total mill residue quantities beyond 1,000,000 tons in Louisiana.

State Zip Code Total Mill Residue (ton) Total Transportation Cost ($)
LA 71460 1365551.05 4673991.10
LA 71462 1288203.61 4621543.59
LA 71406 1275495.25 4466529.65
LA 71426 1273272.12 4242813.39
LA 71449 1272172.00 3665809.99
LA 71065 1266826.65 4636708.01
LA 71486 1206287.59 3847089.69
LA 71458 1174919.84 5444621.70
LA 71429 1165590.23 4033257.82
LA 71457 1107036.76 5092675.53
LA 71497 1107036.76 5082557.34
LA 71002 1101337.04 4879258.30
LA 71414 1097768.63 4860514.64
LA 71066 1087754.43 4832870.81
LA 71063 1017585.72 3994870.56
LA 71419 1014244.54 3646166.57
LA 71038 1013500.16 4887323.09
LA 71070 1002649.09 4355162.17
LA 71450 1000125.39 3738292.67
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Figure 5.5 The distribution of total mill residues quantities within a 40 mile radius LA.
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Figure 5.6 Five candidate bio-refinery locations in northwest LA based on total mill residue
quantities and geographic dispersion.
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Figure 5.7 Supply curves for five potential bio-refinery locations in LA.
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Figure 5.9 Supply curves for seven potential bio-refinery locations in LA near Toledo Bend
Reservoir.

The zip code 71449 has the lowest transportation cost, which is approximately $3.10/ton (Table
5.3), followed by 71426, 71460 and 71486, with corresponding approximately transportation
costs of $3.50/ton. The zip code 71406 is ranked fifth with transportation costs of
approximately $3.60/ton, followed by zip code 71462 with $3.90/ton. The final ranked zip code
is 71486 with transportation costs of approximately $4.20/ton. All these trucking costs are

lower than that of the best candidate 75928 zip code in TX for a million tons of mill residues.

Based on the analysis of the supply curves, the best biorefinery site is zip code 71449,
labeled as “A” in Figure 5.10; followed by zip codes 71426, 71460 and 71486, labeled as “B”;
followed by zip code 71406, labeled as “C”. Those are the top five biorefinery locations in LA.
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Table 5.3 The detailed information about the best bio-refinery location 71449.

neighbo
Zip . ring driving c}riving mill transportation transportation cu.mula.ting cumulating cost per ton
code Z|'pcode time (min) dlstz?mce residue cost per.truck cost ($) mill residue cost ($) ($/ton)
in 40 (mile) (ton) round trip (S) (ton)
miles
71449 71449 0 0 230227 0 0 230,227 $305,502 $1.33
71449 71426 16.78 6.00 6163 25.52 8178.53 236,390 $313,680 $1.33
71449 71486 24.53 11.91 102506 46.07 245570.56 338,897 $559,251 $1.65
71449 71406 29.02 14.60 17137 55.91 49823.65 356,035 $609,075 $1.71
71449 71462 28.53 16.85 79014 61.97 254577.28 435,049 $863,652 $1.99
71449 71429 31.50 16.35 261393 62.10 844075.81 696,443 $1,707,728 $2.45
71449 71469 34.57 17.95 55254 68.18 195887.36 751,697 $1,903,615 $2.53
71449 71065 38.32 20.29 58709 76.68 234085.31 810,406 $2,137,700 $2.64
71449 71419 37.98 24.96 114184 89.55 531681.55 924,591 $2,669,382 $2.89
71449 71439 46.23 26.54 9829 98.26 50220.00 934,420 $2,719,602 $2.91
71449 71457 44.15 27.10 20267 98.74 104052.05 954,687 $2,823,654 $2.96
71449 71450 50.08 28.63 11594 106.12 63975.53 966,282 $2,887,629 $2.99
71449 71063 54.27 29.48 9283 110.66 53414.72 975,565 $2,941,044 $3.01
71449 75948 56.55 32.39 135151 120.00 843251.08 1,110,717 $3,784,295 $3.41
71449 71403 55.80 33.08 7061 121.53 44623.80 1,117,778 $3,828,919 $3.43
71449 75959 63.05 34.88 95571 130.33 647644.76 1,213,349 $4,476,564 $3.69
71449 71446 57.53 37.32 12 134.28 88.52 1,213,362 $4,476,652 $3.69
71449 75930 66.40 37.75 58810 140.10 428403.53 1,272,172 $4,905,056 $3.86
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Figure 5.10 The top five biorefinery sites all in LA based on trucking transportation costs.

72

www.manharaa.com




5.6 Conclusion

In this chapter, the top five biorefinery sites are identified in LA and TX based on the mill
residue quantities and trucking costs. Supply curves are constructed to select the better optimal
biorefinery locations. The top five locations by zip code are 71449, 71426, 71460, 71486, and
71406. All of these zip codes are near the Toledo Bend Reservoir, a boundary between LA and
TX. The best zip code with the lowest trucking costs is 71449. For 1,000,000 tons of mill residue
supply per year the transportation cost is approximately $3.10/ton. Note this cost estimate
excludes profit margin. The real cost for a biorefinery facility may be substantially higher than
the estimated trucking costs presented in this thesis if the biorefinery uses commercial truck
hauling instead of trucks owned by the biorefinery plant. The ranking of the best biorefinery
locations by zip code may change if profit margin is added, i.e., profit margin or trucking rate
guotes vary by the availability of truck transport in a geographic region based on market

conditions for commercial trucking.

In the complete study of biorefinery siting in the eastern U.S., forest and agriculture
harvesting cost models will be developed with forest and agriculture resource cost database
will be constructed. A Microsoft SQL® database will be developed to fuse all datasets in one
database and a final modeling algorithm for locating optimal biorefineries in 33 eastern states

will be developed. The website of www.BioSAT.net is in development which will be a user

interface for this modeling system. Railroad networks with intra-model transfer points for

approximately 38,000 zip codes will also be used to estimate transportation costs.
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Chapter 6

6. Conclusions and Future Research

In the past biofuels and energy from biomass have been explored as an alternative to
fossil fuels. The U.S., European, Chinese, and Indian economies are heavily dependent on fossil
fuels and recent surges in oil prices are of serious consequence to these economies. The serious
problem of greenhouse gases released into the atmosphere from the combustion of fossil fuels
and the possible exhaustion of oil reserves have accelerated the interest by scientists, industry
leaders, and politicians toward the development of new alternative sources of energy. Biofuels
deriving from nonfood feedstocks offer a promising solution for substitution away from

petroleum-based energy.

In this thesis, statistical classification methods are used to study the factors that
influence landowner attitudes towards harvesting timber. Statistical classification is a
procedure in which individual cases are sorted into groups based on one or more quantitative
and/or qualitative characteristics of the cases. There are numerous techniques and algorithms
for classification problems, such as logistic regression, linear discriminant analysis (LDA), cluster
analysis, and classification trees (CT). Most software packages have these functions. Each
technique has limitations and advantages. LDA and CT methods are used in this thesis to
analyze a survey of 495 private forest landowners that was conducted in seven counties of
Tennessee located in Northern Cumberland Plateau region. LDA models and CTs identified

approximately the same significant variables and had similar classification rates. Classification
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of survey results indicated that 73.3 percent of farmer forest landowners harvested timber, and
69.6 percent of non-farmers who had a length of residency beyond 36.5 years harvested timber.
For forest landowners who conducted commercial timber harvests, the importance level of
income from the harvest was the overriding factor relative to all other factors. Discriminant
analysis results supported the results of CTs. However, the linear discrimination functions and
corresponding coefficients did not provide the level of easy-to-interpret two-dimensional detail
of CTs, which also detected hidden interactions. These methods provide foresters and land
managers with objective and scientific-based tools to assess characteristics of forest

landowners likely to harvest trees.

Finding optimal sites for biofuel refineries is an important issue for low cost and
competitive biofuel production. Considering the environmental impacts, economic influences,
political incentives, and availability of labor, biofuel refinery siting modeling is a complex
procedure which has received substantial research support. Bioenergy production is highly
geographically dependent on feedstock sources and transportation costs have a strong
influence on optimal low cost locations. Many cellulosic biofuel plants derive biofuels from
unused agricultural and woody residue. Given the low cost of the unused residues,
transportation costs can account for a significant portion of the total biomass fuel costs. New
plant sites selected in proximity to unused residues that can be procured at minimum
transportation costs will offer strong economic advantages by minimizing raw material costs at

the mill gate.
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Using supply curves that are based on aggregate biomass quantities and transportation
costs by truck provide a feasible method to identify optimal biorefinery locations. In this thesis,
this supply curve method was used to find the top five zip code locations in Louisiana and Texas
for biorefineries with an annual demand of 1,000,000 tons of mill residues from primary wood
manufacturing facilities. The top five optimal zip code locations are 71449, 71426, 71460,
71486, and 71406, all near the Toledo Bend Reservoir, a boundary between Louisiana and Texas.
The best zip code location with the lowest trucking cost is 71449. For 1,000,000 annual tons of
mill residues, the transportation cost is approximately $3.10/ton. This cost does not include

profit margin.

In future research, trucking costs that include profit margin, rail-trucking costs scenarios,
consideration for other feedstocks (e.g., urban waste, logging residues, agricultural residues,
etc.) will be assessed to estimate optimal biorefinery locations. Woody biomass harvesting
costs and agricultural biomass harvesting costs will be added into a future siting model. A real-

time, web-based siting model (www.BioSAT.net) is in alpha-stage development which will

estimate economic supply curves for any given zip code location for 33 Eastern United States.
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